COMMON PARTS/MATERIALS, SPACE USE, APPLICATION DATA SHEET FOR

Part Description	TRANSFORMERS AND INDUCTORS, POWER
Part Number and Type	JAXA 2110/A152-T000
Applicable Specification	JAXA-QTS-2110 JAXA-QTS-2110/A152

August 2022

Prepared and Established by Tamura Corporation

Issued by Japan Aerospace Exploration Agency

This document is the English version of JAXA QTS/ADS which was originally written and authorized in Japanese and carefully translated into English for international users. If any question arises as to the context or detailed description, it is strongly recommended to verify against the latest official Japanese version.

The release date of the English version of this specification: February 10, 2023

JAXA-ADS-2110/A152C
22 August 2022

J A X A Application Data Sheet

Page

-i-

E-A4-30342C

Revision Log

Rev.	Date Revised Contents			
NC	30 Sept. 2006	Original		
A	20 June 2012	 (1) Page 7: Outgassing Data of Materials Added data for wire of Furukawa Magnet Wire and Hitachi Cable Added Outgassing data for the final product. (2) Page 3: Changed the contact due to reorganization. Before After Avio & Industrial Devices Business Unit Business Sector Components Quality Assurance Group 		
		 (3) Page 3: Added paragraph 6 RELIABILITY (4) Pages 5 and 6: Reflected the re-certified qualification test data results Replaced the initial qualification test data with the latest test data for re-certification. (5) Others: Page 5: Added table number in Table 1. Page 6: Added the table title of Table 2 "Evaluation Test Results (Electrical Characteristics)". 		
В	16 February 2017	 (1) Page 4 Markings: Added manufacture line identification code to the serial number in (3) Markings Added a marking example; a symbol, "W" indicates that products are manufactured in Wakayanagi Tamura Corporation; no symbol indicates that the products are manufactured in Tamura Corporation. (2) Page 6, Table 2: Added data of the samples manufactured in Wakayanagi Tamura Corporation in the range of measurement. 		
С	22 Aug. 2022	 (1) Page 3, Paragraph 8: Changed contact division and telephone number in association with organization change. • AVIO Department → Magnetic Business Unit, AVIO Department • +81-49-284-3105 → +81-50-3664-0489 		

JAXA-ADS-2110/A152C 22 Ausugt 2022

J A X A Application Data Sheet

Page

−ii−

E-A4-30342C

Contents

1.	GENERAL	. 1
1.1	Scope	
1.2	Applicable Documents	
2.	SUMMARY OF PRODUCTS	
2.1	Externals, Dimensions and Mass	. 1
2.2	Construction	. 1
3.	USAGE	.2
3.1	Rating	.2
3.2	Installation Methods	.2
4.	CHARACTERISTICS UNDER NORMAL OPERATING CONDITIONS	.2
4.1	Electrical Characterisitcs	.2
4.2	Environmental Resistance	.2
4.3	Outgassing	.2
5.	HANDLING AND STORAGE CONDITIONS	.3
6.	RELIABILITY	.3
6.1	Possible Failure Mode	.3
7.	PRECAUTIONS	.3
7.1	Instructions for Purchaser	.3
7.2	Instruction for Use	.3
8.	OTHERS	.3

JAXA-ADS-2110/A152C 22 August 2022	J A X A Application Data Sheet	Page	- 1-
/ tagact	Application Data Chicot		

COMMON PARTS AND MATERIALS, SPACE USE, APPLICATION DATA SHEET FOR

GENERAL

1.1 Scope

This Application Data Sheet details additional general information necessary for parts selection and/or equipment design that is not contained in JAXA-QML. Users are encouraged to look into other information sources for specific applications, and responsible for their decisions on part selection and usage.

1.2 Applicable Documents

(1) JAXA-QTS-2000 Common Parts/Materials, Space Use, General

Specification for

(2) JAXA-QTS-2110 Transformers and Inductors, High Reliability, Space

Use, General Specification For

(3) JAXA-QTS-2110/A152 JAXA 2110/A152 Type, Transformers and Inductors,

Power, (Outgassing-qualified), High Reliability,

Space Use, Detail Specification For

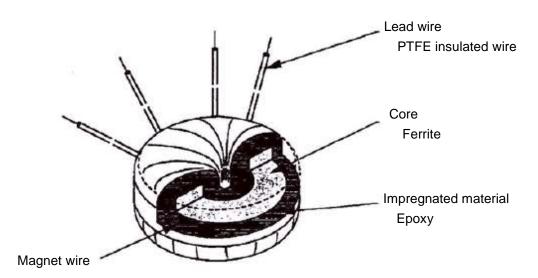
2. SUMMARY OF PRODUCTS

The transformer described in this data sheet is an open type high reliability product, which satisfies the outgassing requirements, for electric equipment to be installed on satellites and/or launch vehicles.

2.1 Externals, Dimensions and Mass

Externals, dimensions, mass and markings of the transformer are shown below.

Part number	Externals, dimensions and marking	Mass (nominal value)	
JAXA 2110/A152-T000	See Figure 1	304g	


2.2 Construction

The transformer is of an epoxy resin impregnated open type. Magnet wires are wound around a toroidal core. Direct wires or PTFE insulated wires are pulled out to serve as the leads. The following figure shows a simplified internal construction.

Page

- 2-

E-A4-30342C

3. USAGE

3.1 Rating

The transformer is rated as follows.

Part number	Rated	Operating	Operating ambient	Temperature	Input
i ait iiuiiibei	power	frequency	temperature (1)	rise (1)	voltage
JAXA2110/A152-T000 97VA		50kHz	-55°C to 100°C	30°C max.	50Vrms

Note (¹) Operating ambient temperature + Temperature rise = Maximum operating temperature S (130°C) max.

3.2 Installation Methods

It is recommended to install the transformer as follows.

(a) Use both a retainer plate and epoxy adhesive. The retainer plate shall be fastened with stainless-steel screws.

4. CHARACTERISTICS UNDER NORMAL OPERATING CONDITIONS

4.1 Electrical Characterisitcs

The transformer satisfies the electrical characteristics specified in the detail specification. Test results are shown in Tables 1 and 2.

4.2 Environmental Resistance

The transformer satisfies the environmental conditions specified in the detail specification. Test results are shown in Tables 1 and 2.

4.3 Outgassing

The transformer satisfies the outgassing requirements specified in the detail specification. Outgassing data of organic materials used in the transformer is shown in Table 3.

JAXA-ADS-2110/A152C	JAXA	Dana	2
22 August 2022	Application Data Sheet	Page	– 3–

5. HANDLING AND STORAGE CONDITIONS

- (1) Use caution not to expose the transformer to excessive stresses such as shock by drop.
- (2) It is recommended to store the transformer under the following conditions.

Items	Conditions
(1) Temperature	+0°C to +35°C
(2) Relative humidity	75%RH max.
(3) Pressure	86kPa to 106kPa
(4) Others	It is recommended to store where vibrations and shocks are minimal

6. RELIABILITY

6.1 Possible Failure Mode

- · Open circuit (breaking, bad connection)
- · Short circuit (Insulation breakage, insulating film breakage)
- · Low Inductance (iron core breakage, flexure, layer short)

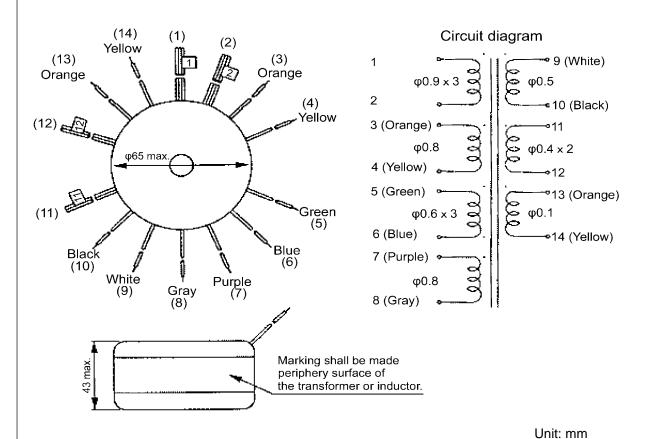
7. PRECAUTIONS

7.1 Instructions for Purchaser

If purchaser's specification is included in the "qualification coverage" specified in the detail specification, JAXA-QTS-2110/A152, Paragraph 3.1, or if "qualification by similarity" specified in JAXA-QTS-2110, Appendix A (Paragraph A.3.1.1.1), is applicable, products can be provided as JAXA certified parts. In this case, the purchaser can specify requirements for specific applications in product specification (refer to JAXA-QTS-2110, Paragraph 6.3) for each procurement.

7.2 Instruction for Use

- Apply sufficient adhesive to the bonding surface.
- The acceptable adhesive is rigid epoxy adhesive.
- \bullet It is recommended to maintain the operating frequency deviation within $\pm 5\%$ of the rated operating frequency.
- It is recommended to operate the transformer within the rated output power and direct current
- Operate the transformer in the temperature class S (130°C) as a maximum.


8. OTHERS

Direct all inquiries about this data sheet to Tamura Corporation.

Manufacturer	Tamura Corporation		
	Electronic Components Business Sector, Magnetic Business Unit,		
	AVIO Department, Quality Assurance Group		
Address	5-30, Chiyoda 5-chome, Sakado-shi, Saitama 350-0214, Japan		
Telephone	+81-50-3664-0489		

JAXA-ADS-2110/A152C J A X A
22 August 2022 Application Data Sheet Page -4-

E-A4-30342C

(1) Lead wire length: 100mm min.

No.18 AWG for terminals 5, 6

No.20 AWG for terminals 3, 4, 7, 8

No.24 AWG for terminals 9, 10

No.30 AWG for terminals 13, 14

Direct wire leads of φ0.9mm x 3 for terminals 1, 2

Direct wire leads of φ0.4mm x 2 for terminals 11, 12

Insulator removed approx.10mm at the end

- (2) Mass: 350g max.
- (3) Markings:

JAXA2110/A152-T000

Lot identification code

Serial number and manufacture line identification code

(Marking example)

Serial number Manufacture line identification code
W: Wakayanagi Tamura Corporation
No symbol: Tamura Corporation

Trademark

Terminal identification

Figure 1. Externals, Dimensions and Markings

JAXA-ADS-2110/A152C	JAXA	Dene	_
22 August 2022	Application Data Sheet	Page	- 5-

Table 1. Evaluation Test Results (Environmental Resistance and Electrical Characteristics)

Item	no.	Test item	Test	Pass/Fail criteria	Test result (P	aramete	r range)
Group		T OOL ROTT	method(1)	1 door all ontona		Passed	Failed
I	1	Thermal shock	A.4.4.6.3	No corrosions affecting electrical performance nor mechanical damages	Acceptable	8	0
	2	Material, design, structure, externals, dimension, marking, workmanship	A.4.4.2 A.4.4.3	Markings, dimension, mass and structures shall be as specified in the detail specification.	Acceptable	8	0
	3	Electrical characteristics	A.4.4.1	Shown in Table 2.		8	0
	4	Withstanding voltage (ambient pressure)	A.4.4.2.1	No dielectric breakdown	Acceptable	8	0
II	5	Withstanding voltage (reduced pressure)	A.4.4.2.2	No dielectric breakdown	Acceptable	8	0
	6	Interlayer withstanding voltage	A.4.4.4.3	No dielectric breakdown	Acceptable	8	0
	7	Insulation resistance	A.4.4.4.4	10,000MΩ min.	100,000M Ω min.	8	0
	8	Bacteria resistance		External materials shall be processed to prevent bacterial infestation.	Bacteria resistance material used		
	9	Life	A.4.4.7.1	No mechanical or electrical damages	Acceptable	2	0
Ш	10	Visual and mechanical inspection (post-test)	A.4.4.2.1	Markings, dimension, mass and structures shall be as specified in the detail specification	Acceptable	2	0
	11	Electrical characteristics	A.4.4.4.1	Shown in Table 2.		2	
	12	Terminal strength	A.4.4.5.1	No loosening, breakage or other mechanical damages to the terminals	Acceptable	6	0
	13	Temperature rise	A.4.4.4.6	30°C max.	2.8 to 3.7°C	2	0
	14	Vibration	A.4.4.6.1	No mechanical damages	Acceptable	6	0
	15	Shock	A.4.4.6.2	No mechanical damages	Acceptable	6	0
N. /	16	Moisture resistance	A.4.4.6.5	No corrosions affecting electrical performance nor mechanical damages	Acceptable	6	0
IV	17	Overload	A.4.4.4.1.21	No corrosions affecting electrical performance nor mechanical damages	Acceptable	6	0
	18	Electrical characteristics	A.4.4.4.1	Shown in Table 2.		6	0
	19	Visual and mechanical inspection (post-test)	A.4.4.2.1	Markings, dimension, mass and structures shall be as specified in the detail specification	Acceptable	6	0
1	20	DPA	A.4.4.3.1	No gap or cracks	Acceptable	3	

Note (1) Indicates paragraph number of JAXA-QTS-2110.

JAXA-ADS-2110/A152C	JAXA	Done	
22 August 2022	Application Data Sheet	Page	– 6–

Table 2. Evaluation Test Results (Electrical Characteristics)

JAXA2110/A152-T000

Pass/Fail criteria		Parameter Range		
		Tamura Corporation	Wakayanagi Tamura sample	
		Sakado factory sample		
Between (1-2	Between (1-2) 3.0mH min.		5.50 to 6.54mH	
(3- 4) / (1-2	2) 1.500 ± 3%	-0.1 to 0.1%	0.0%	
(5- 6) / (1-2) 0.800 ± 3%		-0.1 to 0.1%	0.0%	
(7- 8) / (1-2) 1.300 ± 3%		0.1 to 0.2%	0.0%	
(9-10) / (1-2) 2.475 ± 3%		0.3 to 0.4%	0.1 to 0.3%	
(11–12) / (1–2) 1.300 ± 3%		0.1 to 0.2%	0.0 to 0.1%	
(13–14) / (1–2) 0.300 ± 4%	0.1 to 0.4%	0.0 to 0.2%	
Between (1 – 2	2) 0.05Ω max.	0.029 to 0.031Ω	0.029 to 0.030	
Between (3 – 4) 0.30Ω max.		$0.162 \text{ to } 0.164\Omega$	0.162 to 0.163	
Between (5 – 6) 0.08Ω max.		0.057 to 0.059Ω	0.057 to 0.059	
Between (7 – 8) 0.30Ω max.		$0.163 \text{ to } 0.165\Omega$	0.161 to 0.163	
Between (9– 10) 1.20Ω max.		0.799 to 0.812Ω	0.792 to 0.807	
Between (11–12) 0.55Ω max.		0.346 to 0.356Ω	0.347 to 0.353	
Between (13–1	4) 4.00Ω max.	2.718 to 2.889Ω	2.623 to 2.705	
Test points 1, 3, 5, 7, 9, 11 and 13 shall have the same polarity.		A acontoble	Acceptable	
		Acceptable		
A (Diameter)	Ф65mm MAX	59.2 to 59.8mm	58.2 to 59.6mm	
B (Height)	43mm MAX	38.6 to 39.2mm	38.0 to 38.4mm	
C (Lead length)	100mm MIN	134 to 135mm	135mm	
_		107.4 to 109.1cm ³	101.0 to 107.1cm ³	
350g max.		299.8 to 305.6g	294.7 to 300.5g	
	Between (1-2 (3-4) / (1-2 (5-6) / (1-2 (7-8) / (1-2 (9-10) / (1-2 (11-12) / (1-2 Between (1-2 Between (3-4 Between (5-6 Between (7-8 Between (9-1 Between (11-1 Between (13-1 Test points 1, 3, 5 shall have the s A (Diameter) B (Height) C (Lead length)	Between (1-2) 3.0mH min. $ (3-4) / (1-2) 1.500 \pm 3\% $ $ (5-6) / (1-2) 0.800 \pm 3\% $ $ (7-8) / (1-2) 1.300 \pm 3\% $ $ (9-10) / (1-2) 2.475 \pm 3\% $ $ (11-12) / (1-2) 1.300 \pm 3\% $ $ (13-14) / (1-2) 0.300 \pm 4\% $ Between $(1-2) 0.05\Omega$ max. Between $(3-4) 0.30\Omega$ max. Between $(5-6) 0.08\Omega$ max. Between $(7-8) 0.30\Omega$ max. Between $(9-10) 1.20\Omega$ max. Between $(11-12) 0.55\Omega$ max. Between $(11-12) 0.55\Omega$ max. Between $(13-14) 4.00\Omega$ max. Test points $1, 3, 5, 7, 9, 11$ and 13 shall have the same polarity. A (Diameter)	Pass/Fail criteria Tamura Corporation Sakado factory sample Between (1-2) 3.0mH min. 5.73 to 6.40mH (3-4) / (1-2) 1.500 ± 3% -0.1 to 0.1% (5-6) / (1-2) 0.800 ± 3% -0.1 to 0.2% (9-10) / (1-2) 1.300 ± 3% 0.1 to 0.2% (11-12) / (1-2) 1.300 ± 3% 0.1 to 0.2% (13-14) / (1-2) 0.300 ± 4% 0.1 to 0.4% Between (1-2) 0.05Ω max. 0.029 to 0.031Ω Between (5-6) 0.08Ω max. 0.162 to 0.164Ω Between (7-8) 0.30Ω max. 0.057 to 0.059Ω Between (9-10) 1.20Ω max. 0.799 to 0.812Ω Between (11-12) 0.55Ω max. 0.346 to 0.356Ω Between (13-14) 4.00Ω max. 2.718 to 2.889Ω Test points 1, 3, 5, 7, 9, 11 and 13 shall have the same polarity. Acceptable A (Diameter) Φ65mm MAX 59.2 to 59.8mm B (Height) 43mm MAX 38.6 to 39.2mm C (Lead length) 100mm MIN 134 to 135mm 107.4 to 109.1cm³	

JAXA-ADS-2110/A152C	JAXA	Dana	7
22 August 2022	Application Data Sheet	Page	- 7-

Table 3. Outgassing Data

JAXA certified parts Outgassing Data of Materials (JAXA 2110/A152-T000)

No.	Name of materials	Part Number	Materials	TML (%)	CVCM (%)	Mass (g) (reference)
1	Adhesive tape	No. 1205	Polyimide/ acrylic adhesive	0.859	0.065	1
2	Insulating film	LUMIRROR	Polyester	0.150	0.000	0.5
3-1	Wire	PEW (insulator) (Sumitomo Electric Wintec Co., Ltd.)	Polyester	0.122	0.009	
3-2	Wire	PEW (insulator) (Furukawa Magnet Wire Co., Ltd.)	Polyester	0.009	0.000	
3-3	Wire	PEW (insulator) (Hitachi Cable Ltd.)	Polyester	0.008	0.001	
4	Lead wire	TYPE E (insulator)	PTFE	0.005	0.008	
5	Insulating film	KAPTON H type	Polyimide	0.904	0.002	0.5
6	Insulating tape	MERUBON insulating tape	Polyester	0.120	0.029	2
7	Adhesive	ECOBOND 104	Epoxy type	0.325	0.006	2
8	Ink	M-9-N	Epoxy type	0.490	0.035	0.05
9	Impregnated material	No. 280	Ероху	0.581	0.047	40
	The outgassing data for the finished product			0.555	0.044	46.05